Facial Expressions Recognition in a Single Static as well as Dynamic Facial Images Using Tracking and Probabilistic Neural Networks

نویسندگان

  • Hadi Seyedarabi
  • Won-Sook Lee
  • Ali Aghagolzadeh
  • Sohrab Khanmohammadi
چکیده

An efficient, global and local image-processing based extraction and tracking of intransient facial features and automatic recognition of facial expressions from both static and dynamic 2D image/video sequences is presented. Expression classification is based on Facial Action Coding System (FACS) a lower and upper face action units (AUs), and discrimination is performed using Probabilistic Neural Networks (PNN) and a Rule-Based system. For the upper face detection and tracking, we use systems based on a novel two-step active contour tracking system while for the upper face, crosscorrelation based tracking system is used to detect and track of Facial Feature Points (FFPs). Extracted FFPs are used to extract some geometric features to form a feature vector which is used to classify input image or image sequences into AUs and basic emotions. Experimental results show robust detection and tracking and reasonable classification where an average recognition rate is 96.11% for six basic emotions in facial image sequences and 94% for five basic emotions in static face images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model

Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...

متن کامل

Classification of Upper and Lower Face Action Units and Facial Expressions using Hybrid Tracking System and Probabilistic Neural Networks

The most of the human emotions are communicated by changes in one or two of discrete facial features. Theses changes are coded as Action Units (AUs). In this paper, we develop a lower and upper face AUs classification as well as six basic emotions classification system. We use an automatic hybrid tracking system, based on a novel two-step active contour tracking system for lower face and cross-...

متن کامل

Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks

In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...

متن کامل

Educational Facial Emotion Recognition in Children With Autism Spectrum Disorder: A Clinical Trial Study

Objective: The disability to recognize facial emotions is one of the behavioral problems in autistic children. This study was designed to evaluate the effect of education on the promotion of face recognition. Methods: This single-blind clinical trial study was conducted on children with autism. The participants were allocated with random sampling to the two groups. Autistic children in the int...

متن کامل

Facial Action Unit Recognition from Video Streams with Recurrent Neural Networks

Facial expressions are one of the parameters for accessing individual behavioral processes. Their recognition and verification can be framed as the identification of states of dynamical systems generated by physiological processes. Whereas a snap shot of a dynamical system gives information about its current state, a time series of past states captures its trajectory in state space. The descrip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006